パルス単位の設定

レーザー加工機は、稼働を続けていると、経年変化によりタイミングベルトの摩耗、テンションの変化が発生 します。この要因により、X 軸および Y 軸の移動量とデータと値と誤差が生じて、加工に問題が発生する場合 があります。

この現象は「パルス単位」を補正することにより、修正できます。

「パルス単位」の補正は以下の手順で行います。

① 50 X 50 [mm]の正方形の切断データを用意します。

② レーザー加工機にダウンロードし、加工を行ってください。

無地のコピー用紙を加工素材に使用して、出力を抑え、スピードを速くして、加工することを推奨します。 切断した線がシャープに出て、はっきりわかる程度に出力とスピードを調整してください。切断面の周囲に延 焼や焦げがある場合はスピードを上げるか出力下げてください。

必ず焦点位置を合わせて行ってください。

X および Y の実測値が 50mm ではなかった場合は「パルス単位」の補正が必要です。 ともに実測 50mm だった場合は、補正の必要はありませんので、手順は終了です。

④ LaserCut メニューの「ファイル」-「マシン設定」をクリックして、「マシン設定」ダイアログを表示させます。

「マシン設定」ダイアログが表示されたら、左ペインにある「加工エリア」をクリックします。

クリックする

マシン設定		
マシン設定 	×軸 パルス単位 0.0127000000 … サイズ 400.0 原点方向 +方向 ▼ 「▼ 自動原点 開始速度 5.0 最高速度 100.0 加速度 600.0 空間の加速度 1200.0	Y軸 パルス単位 0.0127000000 … 範囲 300.0 … 原点方向 +方向 ▼ 原点速度 120.0 定常速度 5.0 テスト時の速度(高速) 120.0 テスト時の速度(低速) 100.0 デュアルヘッドの間隔 0.0 と見て変更速度 20.0
	空間の加速度2 12000.0 保存 閉	Y-最大変更速度 20.0

※ 上図マシン設定ダイアログの設定内容は機種、機体によって異なります。

⑤ パルス単位を補正します。

「マシン設定」ダイアログの「パルス単位」を設定します。 X 軸および Y 軸用の設定は分かれていますので、実測値が異なっていた方の値を補正します。X、Y 両方とも異 なっていた場合は、両方の設定が必要です。

パルス単位の右にあるボタンをクリックすると「パルス単位の計算」ダイアログが表示されます。

「パルス単位の計算」ダイアログが表示されたら、「移動量」の値を変更します。

パルス単位の計算	
移動量: 必要パルス数: [O)	40.640000

実測値が 50mm よりも大きかった場合は、「移動量」を増やします。 実測値が 50mm よりも小さかった場合は、「移動量」を減らします。

例 移動量を現値の2倍の値に設定すると、実際の加工の長さは半分になります。移動量を現値の半分の値に 設定すると、実際の加工の長さは2倍になります。

上図「移動量」「必要パルス数」の設定は機種、機体によって異なります。従って、この資料で、いくつに設 定する、ということはいえません。 ユーザー様にて適切な値を見つけていただく必要があります。

とりあえず、実測値が大きかった場合は移動量の設定を+1してください。実測値が小さかった場合は、移動 量の設定値を-1してください。

⑥ 設定を保存してください。

設定値を変更したら、「パルス単位の計算」ダイアログの OK ボタンをクリックしてダイアログを閉じてください。

「マシン設定」ダイアログが表示されているので、「保存」をクリックします。

マシン設定		X	
 □ マジン設定 □ ントローラ - コントローラ - ブイード □ かエスカ注が開発定 - 切断 - 同彩 	X軸 パルス単位 00127000000 サイズ 4000 原点方向 +方向 ▼ ▼ 自動原点	Y軸 パルス単位 0.0127000000 範囲 300.0 原点方向 +方向 ▼ 原点速度 1200	
	間始速度 最高速度 100.0 22間の加速度 22間の加速度 加速度2 6000.0 22間の加速度2 22間の加速度2	定常速度 50 テスト時の速度(高速) 1200 テスト時の速度(低速) 1000 デュアルヘッドの間隔 00 X-最大変更速度 200 Y-最大変更速度 200	
	(RF	閉じる	
1 2	フリックする (2	2) クリックする	

⑦ 設定のダウンロード、データのダウンロードを行ってください。

「ダウンロードマネージャ」ダイアログが表示されたら、まず「設定のダウンロード」をクリックします。レ ーザー加工機からブザー音が聞こえてから、次に「データのダウンロード」をクリックします。

ダウンロード マネージャ						
	No.	ファイル名	サイズ			
				10865.0. M		
1	設定のタワンロー	トレーテータのタワン 全間IR全 読売				
Ŀ	HURRAN		19700 P	91920 F		

「設定のダウンロード」をクリックしてもブザーが鳴らない場合は、レーザー加工機の環境を確認してくださ い。

- ※ PC と USB ケーブル接続されているか?
- ※ Z 軸動作モードではないか?
- ※ 加工の一時停止状態ではないか?

⑧ 前記②に戻って加工を行ってください。

加工後、実測し、データの値と実測値を比較します。ずれていたら、パルス単位計算の「移動量」を増減させ ます。

この工程を繰り返し、データのサイズと実測値が一致するまで補正を繰り返してください。