

へ 株式会社 リンシュンドウ

RSD-SUNMAX FLシリーズ

FL4020C

ハイパワーレーザー加工機

manufactured goods について

INDEX

- FLシリーズの紹介
- FLシリーズの特徴
- 他社レーザー機との違い
- FL4020C機種
- ■製品仕様
- 交換部品について
- 消耗品について
- ■よくある質問
- 購入までの流れ
- 会社概要

FLシリーズ

ファイバーレーザー加工機

RSD-SUNMAX FL3015E

RSD-SUNMAX FL3015CNR

RSD-SUNMAX FL3015LN

RSD-SUNMAX FL3015G

rsd-sunmax FL3015GA

RSD-SUNMAXFL3015GC

RSD-SUNMAX FL1325LC

RSD-SUNMAX FL60M

RSD-SUNMAX FL1800

RSD-SUNMAX FL1390

RSD-SUNMAX FL0640

RSD-SUNMAX FL30/FL50

RSD-SUNMAX FL-welding R1000

RSD-SUNMAX FLシリーズの特徴

FLシリーズはファイバーレーザー発振器を使用し、金属加工を可能としています。

豊富な製品ラインナップを取り揃えており、加工内容に応じて選ぶことができます。また、用途に応じてレーザー発振器の選択もできることに加え、ワークエリアなど各加工機をカスタマイズすることも可能です。ハイパワー発振器を選択することにより厚い金属板の切断や、発振器を選定することによりアルミニウムの切断も可能とし、製造の難しさを克服するのに役立ちます。

F L シリーズは、制御用パソコンが内蔵されており、 専用の日本語アプリケーションソフトがインストー ルされています。

また、FL30・FL50-weldingを除く機種にはスタイリッシュなタテ型のフラットモニタと、制御用コントローラを使用し加工を行います。

水冷機や排送風機といった各種レーザー加工機に必要な付属品は、全て含まれております。また、必要に応じて付属品のオプション変更や追加も可能です。

アシストガスを使用することで、金属加工をよりスムーズに行うことができ、製品品質の向上に繋がります。

FLシリーズのファイバーレーザー発振器によって加工設定値が異なります。以下の表は加工時間目安です。

Raycus社製 レーザー発振器(アルミ切断不可)

定格出力[w]	切断素材	切断厚[mm]	加工速度[m/分]					
		1	8.4 ~ 12					
		2	3 ~ 3.6					
	炭素鋼	3	1.5 ~ 2.1					
	次系列	4	1.2 ~ 1.5					
500		5	0.9 ~ 1.2					
300		6	$0.72 \sim 0.96$					
		0.5						
	ステンレス	1						
		2						
		3						
		2						
		3						
		4						
	炭素鋼	5						
		6						
750		8						
700		10						
		0.5						
			12 ~ 18					
	ステンレス		3.6 ~ 4.2					
			1.2 ~ 1.8					
		4	$0.78 \sim 1.2$					
=		1	15 ~ 18					
		2	5.1 ~ 6					
			$3.48 \sim 4.2$					
	炭素鋼	4	$2.28 \sim 2.7$					
	12C 3TC 3PU							
1000								
			$0.6 \sim 0.72$					
	ステンレス	2	2.1 ~ 7.2					
		3						
			2.1 ~ 2.7					
		8	1.2 ~ 1.8					
	炭素鋼	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
			$0.96 \sim 1.2$					
		14						
		16	$0.78 \sim 0.9$					
2000								
		2	$\begin{array}{c} 18 \\ \hline 8.4 \\ \hline \sim 12 \\ \hline 1.8 \\ \hline \sim 2.4 \\ \hline 0.84 \\ \hline \sim 1.2 \\ \hline 12 \\ \hline \sim 18 \\ \hline 4.2 \\ \hline \sim 5.4 \\ \hline 3 \\ \hline \sim 3.9 \\ \hline 1.8 \\ \hline \sim 2.4 \\ \hline 1.2 \\ \hline \sim 1.8 \\ \hline 0.9 \\ \hline \sim 1.2 \\ \hline 0.72 \\ \hline \sim 0.84 \\ \hline 0.6 \\ \hline 21 \\ \hline \sim \\ \hline 12 \\ \hline \sim 18 \\ \hline 3.6 \\ \hline \sim 4.2 \\ \hline 1.2 \\ \hline \sim 1.8 \\ \hline 0.78 \\ \hline \sim 1.2 \\ \hline 1.5 \\ \hline \sim 18 \\ \hline 5.1 \\ \hline \sim 6 \\ \hline 3.48 \\ \hline \sim 4.2 \\ \hline 1.2 \\ \hline \sim 1.8 \\ \hline 0.78 \\ \hline \sim 1.2 \\ \hline 1.5 \\ \hline \sim 18 \\ \hline 5.1 \\ \hline \sim 6 \\ \hline 3.48 \\ \hline \sim 4.2 \\ \hline 2.28 \\ \hline \sim 2.7 \\ \hline 1.68 \\ \hline \sim 2.1 \\ \hline 1.2 \\ \hline \sim 1.8 \\ \hline 0.9 \\ \hline \sim 1.08 \\ \hline 0.6 \\ \hline \sim 0.72 \\ \hline 24 \\ \hline \sim \\ \hline 16.8 \\ \hline \sim 21 \\ \hline 5.4 \\ \hline \sim 7.2 \\ \hline 2.1 \\ \hline \sim 3 \\ \hline 0.9 \\ \hline \sim 1.5 \\ \hline 0.6 \\ \hline \sim 0.9 \\ \hline 4.2 \\ \hline \sim 4.8 \\ \hline 3 \\ \hline \sim 3.3 \\ \hline 2.1 \\ \hline \sim 2.7 \\ \hline 1.2 \\ \hline \sim 1.8 \\ \hline 1.98 \\ \hline \sim 1.5 \\ \hline 0.96 \\ \hline \sim 1.2 \\ \hline 0.9 \\ \hline \sim 1.08 \\ \hline 0.78 \\ \hline \sim 0.9 \\ \hline 0.6 \\ \hline \sim 0.72 \\ \hline 30 \\ \hline \sim 24 \\ \hline \sim 27 \\ \hline \end{array}$					
	ステンレス		$\begin{array}{c} 0.9 \sim 1.2 \\ 0.72 \sim 0.84 \\ 0.6 \\ 0.6 \\ 21 \sim \\ 12 \sim 18 \\ 3.6 \sim 4.2 \\ 1.2 \sim 1.8 \\ 0.78 \sim 1.2 \\ 15 \sim 18 \\ 5.1 \sim 6 \\ 3.48 \sim 4.2 \\ 2.28 \sim 2.7 \\ 1.68 \sim 2.1 \\ 1.2 \sim 1.8 \\ 0.9 \sim 1.08 \\ 0.6 \sim 0.72 \\ 24 \sim \\ 16.8 \sim 21 \\ 5.4 \sim 7.2 \\ 2.1 \sim 3 \\ 0.9 \sim 1.5 \\ 0.6 \sim 0.9 \\ 4.2 \sim 4.8 \\ 3 \sim 3.3 \\ 2.1 \sim 2.7 \\ 1.2 \sim 1.8 \\ 0.9 \sim 1.5 \\ 0.6 \sim 0.9 \\ 4.2 \sim 4.8 \\ 3 \sim 3.3 \\ 2.1 \sim 2.7 \\ 1.2 \sim 1.8 \\ 0.96 \sim 1.2 \\ 0.9 \sim 1.08 \\ 0.78 \sim 0.9 \\ 0.6 \sim 0.72 \\ 30 \sim \\ 24 \sim 27 \\ 9 \sim 10.8 \\ 5.1 \sim 6 \\ 3 \sim 3.6 \\ 1.5 \sim 2.1 \\ 0.9 \sim 1.2 \\ 0.9 \sim 1.2 \\ \end{array}$					
	W 0.00 00 00 00 00 00 00 00 00 00 00 00 0	4	3 ~ 3.6					
		5						
		6						
		8	$0.54 \sim 0.72$					

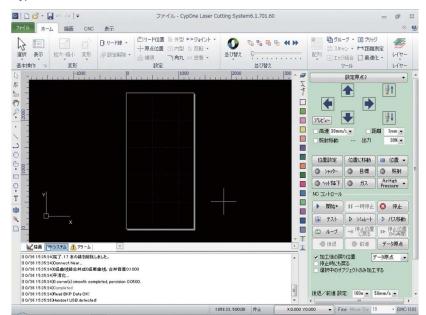
IPG社製 レーザー発振器(アルミ切断可能)

定格出力[w]	切断素材	切断厚[mm]	加工速度[m/分]
	出土何	0.5	10
500	炭素鋼	6	0.7
500	7=1.1.7	0.5	10
	ステンレス	3	1.5
	炭素鋼	0.5	16
700	火糸剄	8	0.7
700	ステンレス	0.5	15
	A)	4	0.8
	炭素鋼	0.5	22
	/人 / 八 外型	10	0.4
	ステンレス	0.5	20
	7,707	6	0.3
1000	アルミニウム	0.5	20
1000	777-72	3	0.7
	真鍮	0.5	10
	262011	2	0.5
	赤銅	0.5	10
	73.43	2	0.5
	炭素鋼	0.5	43
		16	0.4
	ステンレス	0.5	40
		10	0.3
2000	アルミニウム	0.5	30
	0 52 10 61 61	10	0.2
	真鍮	0.5 5	20 0.5
	90 V2 TH	0.5	20
	赤銅	4	0.5
		0.5	50
	炭素鋼	16	0.4
		0.5	50
	ステンレス	12	0.3
0000		0.5	40
3000	アルミニウム	12	0.5
	本へ	0.5	30
	真鍮	8	0.7
	土 组	0.5	30
	赤銅	6	0.7
	炭素鋼	0.5	60
	火糸剄	20	0.7
	ステンレス アルミニウム	0.5	60
		15	0.5
4000		0.5	50
+000		14	0.5
	真鍮	0.5	40
		8	0.7
	赤銅	0.5	40
	NJ. 201	6	0.7

[※]上記加工時間は参考数値です。加工環境により異なります。

FLシリーズのファイバーレーザーのランニングコストの目安です。

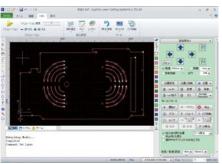
電気代目安	定格出力			
电双八日女	500	1000	2000	
レーザーモジュール [KW] (レーザー発振器)	2	4	8	
自動水冷機 [KW]	2.2	2.8	3.1	
機体制御 [KW] (コントローラ・軸駆動等)	5.4	5.4	6	
排送風機 [KW]	0.75	0.75	3	
合計消費電力 [KW]	10.35	15.2	20.1	
平均消費電力 [KW] (合計消費電力 X 80%)	8.28	12.16	16.08	
電気料金 [円 / 時間]	207	304	402	


電気料金は 1[KWh] = 25 円で換算。電気料金は地域・契約により異なります。 使用電力は概算です。構成機器・部品により変動します。

	アシストガス消費量			定格出力			
	アンベドガベ府負里		500	1000	2000		
窒	ボン	ベ本数 [本 / 時間]	2	2	2.5		
素	価	格 [円 / 時間]	6000	6000	9000		
酸	ボン	ベ本数 [本 / 時間]	1	1	1.25		
素	価	格 [円 / 時間]	3000	3000	4500		

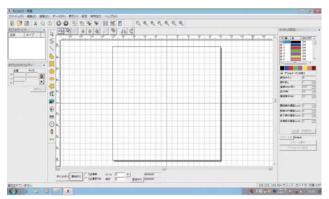
[※] ボンベ本数は、7[m3] のボンベを使用して連続順射した場合の、1 時間当たりの概算使用本数です。 ※ 価格は、ボンベ1 本当たり 3000 円で計算しています。 ※ 窒素は主にステンレス、酸素は主に鉄鋼を加工する際に使用します。

RSDレーザー加工機FLシリーズ 制御ソフトウェア CypOne


CypOneは、RSD-SUNMAX-FLシリーズ用の制御用ソフトウェアです。

CypOneは、RSD-SUNMAX-FLシリーズ平板加工専用の 制御ソフトウエアです。機体に搭載されている制御用パソ コンにインストールされており、更新はありません。

RSD-SUNMAX-FLシリーズの回転加工(パイプ加工)が付帯している機種については、回転加工専用の制御ソフトウエア(TubePro・TebesT-Lite)が別途インストールされています。

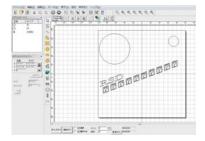


RSDレーザー加工機 FL30/FL50/UVZH 制御ソフトウェア **EzCad2**J

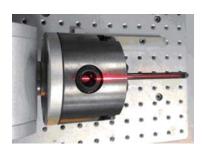
EzCad2Jは、レーザーマーカーRSD-SUNMAX-FL30、RSD-SUNMAX-FL50およびRSD-SUNMAX-UVZH用の制御用ソフトウェアです

EzCad2Jはレーザー加工用の汎用制御ソフトウェアです。

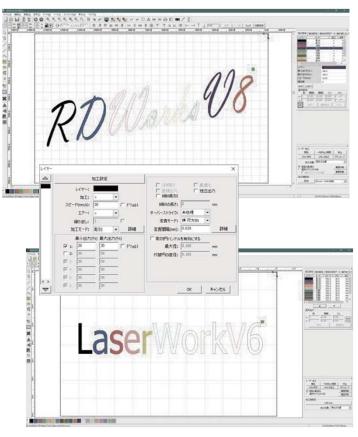
Co2、YAG等、4種類のレーザータイプに対応していまが、EzCad2Jは機種に合わせて設定されています。


一般的なマーキング加工は、外部ソフトウェアを使用することなく、EzCad2Jだけでデザインデータ作成から加工まで可能です。

外部ソフトウェアで作成したアウトラインデータの読み込んで加工できます。 アウトラインデータは、輪郭のみ、またはハッチングによる塗りつぶし加工ができます。


画像ファイルをインポートして、写真やロゴなどのマーキングを行えます。画像ファイルは、「階調による出力調整」、または「ディザ変換」による加工が行えます。

回転加工機をサポートしています。


バーコードのマーキングをサポートしています。

RSDレーザー加工機シリーズ 制御ソフトウェア RDWorks V8 / V6

- ■RSD-SUNMAX-RDシリーズには制御用ソフトウェアとして「RDWorksV8」が付属します。
 - 「RDWorksV8」はWindows 7、10、11に対応しています。
- ■RSD-SUNMAX-LT-ST908シリーズには制御用ソフトウェアとして「LaserWorkV6」が付属します。
- 「LaserWorkV6」はWindows 7、8、10、11に対応しています。

基本的な使用方法として、デザイン用ソフトウェアやCADソフトで作成したデータをRDWorksV8やLaserWorkV6やに読み込むことにより、レーザー加工を行います。

またRDWorksV8やLaserWorkV6自体にも簡易的な作図機能を備えているため、デザイン用ソフトウェアで作成したデータを編集したり、RDWorksV8やLaserWorkV6単体でデザインを作成することが可能です。

4種類の制御モードを備え、用途に合わせて、最適な制御が可能となります。 ひとつのデータ内に複数の制御モードを混在させることが可能です。

ゴム印作成などショルダーが必要な彫刻加工にも、一度のスキャニングで適切な傾斜を付けることができます(傾斜彫刻モード)。

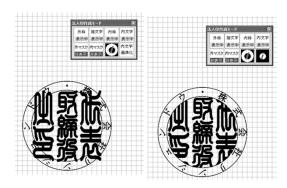
カラー写真等の画像ファイルを読み込んだ場合、レーザー加工を行うために、 モノクロニ値・アミ化を行うことができます。

階調付きモノクロ画像ファイルを使用して、色の濃淡によりレーザー出力を 可変できます。濃い部分と薄い部分で彫刻の深さが変更できます。

レイヤーごとだけではなく、加工内容に応じて、加工順序を自動で最適化できます。

日本語だけでなく、複数の言語に対応しています。

SUNMAX専用版下作成ソフト Laser Marking System



Laser Marking System 編集画面例

Laser Mark V4 には、Laser Marking System とLaser marking Designerの2種類の実行ファイルが含まれています。

Laser Marking SystemはSUNMAXシリーズを制御するための機能および、デザイン作成機能が含まれており、通常はこちらを使用してください。 Laser Marking Designer はLaser Marking System からSUNMAXシリーズを制御するための機能を省いたソフトウェアで、デザインを作成する機能のみとなっております。

SUNMAXシリーズを接続していないコンピュータでデザインをしたい場合などは、Laser Marking Designerを使用してください。

Laser Marking System 法人印作成ツール 編集画面例

他社のレーザー機とどんな違いがあるの?

サンマックスレーザー機は、他のレーザー機と 何が違うのか、比べてみました。

RSD-SUNMAXシリーズは水冷レーザー管を使用しています。

水冷レーザー管のメリット

- レーザーガスの交換が不要で寿命が長い 彫刻3000時間切断 1000時間
- 本体購入時新品保証は1年付
- 部品価格が安く明朗会計で安心
- 自分で部品交換が可能
- 修理期間が短い(最短1日で部品が届くため即日修理可能)
- 水冷式なのでレーザー管の温度を一定に保つことが出来るため彫刻、切断面が安定している
- ローコストでハイパワー

空冷式レーザー発振器のデメリット

- 保証継承ができない。
- 出力と比較して費用対効果が悪い(コスト高すぎる)
- 故障時の修理代が高く修理に長い時間がかかる。(本国に送るため)
- 外気温に左右されるため切断面、レーザー光が不安定

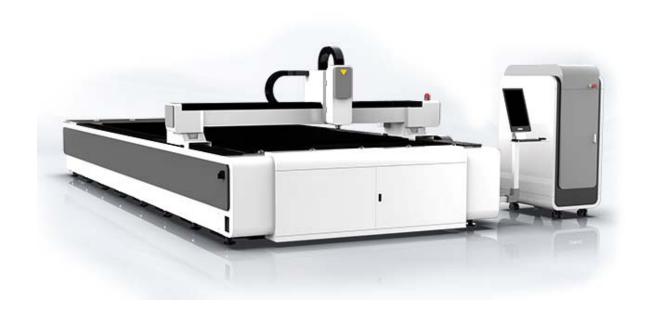
RSD-SUNMAX レーザー加工機は

即時原点設定にてお好きな場所から加工が開始が可能。

XY数值入力不要。

リース会社のご紹介も可能です。

		RSD-SUNMAX	E社
	無償保証期間	【全部品】 1年間	【全部品】 1年間
CO2レーザー	保証期間内の 無償交換回数	【全部品】 ^{※1} 制限な し	【全部品】 1回のみ ※2回目以降 有料
ファイバーレーザー	無償保証期間	【レーザー発振器】 <mark>※2</mark> 2年間 【その他部品】 1年間	【レーザー発振器】 2年間 【その他部品】 1年間
), 1/1/1-V-9-	保証期間内の 無償交換回数	【レーザー発振器】 ^{※2} 2回まで 【その他部品】 制限なし	1回のみ ※2回目以降 有料
修理期 (センドバック		弊社到着から 2営業日以内 に発送	1~2ヶ月待ち
基本技術料		【保証期間内】**3 無料 【保証期間外】 <u>サイト内に明記</u>	3ヶ月まで 無料 3ヶ月目以降 有料
機体配	送料	サイト内に明記	サイト内に記載なし
出張	費	<u> </u>	(高額の可能性あり)
部品代		【保証期間内】 無料 【保証期間外】 有料 <u>レーザー館</u> にて購入可	【保証期間内】 無料 【保証期間外】 有料
延長保証		あり <u>3年・5年長期保証</u>	なし
転売時の保証継承		継承あり	継承なし


^{※1} 部品提供の判断については保証対象の詳細及びレーザー管の無料保証交換についてをご参照ください。

^{※2} レーザー出力が60%以下に低下している場合。

^{※3} 消耗部品等の交換には「発送によるお客様の交換作業」となります。交換をお客様都合で交換ができず、センドバック修理、出張修理等行う場合は、交換部品代金以外の料金は、保証期間外と同等となります。

SUNTAX ISEC LASER TECHNOLOGY

ファイバーレーザー加工機 FL4020C

RSD-SUNMAX-FL4020Cは "使いやすさを重視した、 ファイバーレーザー切断機です"

製品に含まれている主なの部品

・手動操作を必要としない、シンプル なオートフォーカス

専用ソフトウェアが自動的に合焦レンズを調整し、厚さの異なる板であっても自動穿孔および切断を行ないます。 自動的にフォーカスレンズを調整する速度は、手動調整の10倍です。

・より大きな調整範囲

調整範囲-10mm~+10mm、精度0.01mm、0~20mmの異なるタイプ のプレートに適しています。

・長い製品寿命

コリメータレンズとフォーカスレンズの両方に水冷ヒートシンクがあり、これによりカッティングヘッドの温度が下がり、カッティングヘッドの寿命が向上します。

航空用アルミニウムガントリー

航空宇宙規格で製造され、4300トンのプレス押出 成形によって形成されています。時効処理後の強 度はすべてのガントリの最大強度であるT6に達す ることができます。航空用アルミニウムは、良好 な靭性、軽量、耐食性、酸化防止、低密度などの 多くの利点を有し、処理速度が大幅に向上します。

自動水冷機

焦点レンズ等、レーザーヘッドを冷却します。 大流量、低騒音のステンレス製循環ポンプを使用し、タンク、パイプも錆びない素材を使用して、安定した水圧、 長寿命を実現した自動水冷機です。

両側ダブルレール設計

Y軸のねじ曲げによるカット線の変形を防止するため、また直線や円弧の高速切断を安定的に確保するために、両側のY軸には2本のレールガイドとダブルボール駆動ねじが装備されています。

ファイバーレーザーコントローラーBCS100

閉ループ制御方式を採用した高性能制御装置です。

独自のイーサネット通信(TCP / IPプロトコル)インターフェイスを備えており、高さの自動トラッキング、セグメントピアス、プログレッシブピアス、エッジシーク、飛び越し、リフトアップの高さの任意設定など、CypCutで多くの機能を簡単に実現できます。

※ BSC100の操作パネルについては、仕様により、搭載/非 搭載の場合があります。

構成

Raytoolカッティングヘッド。Invoanceサーボモーター。台湾HIWINガイドリニア、台湾YYCラックギア、日本SMC / AIRTEC空気圧部品。フランスMotovoria減速機、フランスSchneider電子部品。Cypcutコントローラ制御システム

自動水冷機 仕様

製品の特長

- あらゆる種類のファイバーレーザー加工に適しています。
- 大流量、低騒音のステンレス製循環ポンプを使用し、タンク、パイプも錆びない 素材を使用して、安定した水圧、長寿命を実現しています。
- 液晶表示付きコントローラを搭載し、全自動でリアルタイムの水温管理・制御を行います。
- 水温制御の精度は±1℃です。
- コントローラは直感的に操作がでます。
- 自動故障診断機能を搭載しています。問題・故障が発生した場合は。問題箇所を直接表示します。
- RS485通信インタフェースを使用して、制御できます。
- 複数の保護機能とパッシブアラーム端子、リモートコントロール端子を提供し、 CNCの集中制御と監視を容易に実現します。
- 周囲温度と同一温度の水温を安定的に循環させ、レーザーユニットの破損を防止します。

型 名 HL-3000-QG2/2/HL-3000-

QG2/2

電 源 220V@50Hz/220V@60Hz

消 費 電 流 17.3 [A] / 16.8 [A]

タンク容量 40L

冷 却 方 式 強制空冷式ラジエター

パ ワ - 3.8KW

循 環 方 式 強制循環

ポ ン プ 力 0.14kw

給排水口直径 10mm

外 寸 750×600×1130mm

重 量 約92kg

製品の特長

- 電源断・冷却水の加熱への警告
- 水温温度をモニタリング表示
- 全自動運転
- メインテナンスフリー
- **※** ファイバーレーザーの出力に応じて型番 が異なります。

■ 諸元表

※ 機種、レーザー出力等の仕様により型番が異なります。

型式	HL-1000- QG2/2	HL-1500- QG2/2	HL-2000- QG2/2	HL-3000- QG2/2	HL-4000- QG2/2	HL-6000- QG2/2	HL-8000- QG2/2	HL-12000- QG2/2	HL-15000- QG2/2	SCH-1500
電源	単相220V 50Hz				三相380V 50Hz			単相220V 50Hz		
定格電力 [KW]	1.7	2.3	2.4	3.1	5.0	8.4	11.0	14.0	15.0	17.0
冷媒					R4	10A				
フッ素注入量(kg)	0.36	0.50	0.65	1.00	1.20	1.90	2.30	2.70	1.8×2	0.38
ポンプ水量 [m3 / h]	2	2	2	4	4	4	8	8	8	2
ポンプカ [m]	38.5	47.5	47.5	48.5	58.5	58.5	68.0	68.0	68.0	38.5
生りないように日	主回路:15~35℃ ±1℃									
制御水温			外光路:20~40℃ ±2℃							
使用水	水道水または純水									
周囲温度[°C]	0~45									
外形寸法[mm] 幅 x 奥行き x 高さ	590×500×860	630×510×920	650×530×980	790×560× 1050	850×630× 1225	820×700×1410	860×720× 1480	1100×810× 1880	1500×800× 1630	800×490× 430
水タンク容量	40							450	400	40
[リットル]	13	13	20	40	45	60	80	150	180	16
重量[Kg]	58	66	76	93	105	130	200	220	310	50

製品仕様

製品に含まれている装備

- ✓ レーザー機本体
- ✓ 水冷機
- ✓ 排送風機
- ✓ 変圧器

本体以外に必要なもの

- □ 単相 200V40A の電源
- □ 集塵機

オプション

- □ 保護メガネ
- □ サーボモーターグレードアップ
- □ 衝突防止切断機能の追加

型式

外寸 [mm]

重量

レーザー形式

レーザー出力 各社共通

制御用ソフトウェア

加工エリア [mm]

最大速度 [m/min]

最大加速 [g]

電圧および周波数

インポート対応ファイル フォーマット

フォロー(倣いセンサー)

位置決め精度[mm]

波長

RSD-SUNMAX-FL4020C

5940 X 3548 X 1950

4730kg

ファイバーレーザー

(IPG または <u>Raycus</u> または TRUMPF 社製発振器) 高反射素材について

> 1000/1500/2000/(3000) W TRUMPF社製は2000/(3000) W

> > Cypcut

 2000×4000

100

1. 2G

AC220V/50Hz/60Hz/60A

DXF, PLT, AI, Gerber, NC $(G \supset - F)$

自動キャリブレーションあり

 ± 0.02

1090nm

ワークエリアサイズ [X x Y x Z mm]	2000 × 4000 × 80
スピード減速機	フランス Motovario
その他	自動注油装置
制御装置	指令単位 0.001mm以下 指令方式 Gコード/Mコード方式 プログラム転送方式 USB ※ネット接続は禁止してます
操作装置	カラー10.4インチ以上。 キーボード・マウス・リモコン タッチパネルはオプション装備可能
設置場所の広さ	本体外寸に対して、前後左右にそれぞれ最低1.5m以 上の空きスペースが必要です。

オプションについて

アップグレードできるのいくつかオプションがあります。

サーボモーター

サーボモーターはinovanceが標準装備となります。 オプションで安川モーターへ変更が可能です。 (要見積もり)

自動交換台タイプへの変更

ワークテーブルの自動交換台タイプへの変更ができます。=GCシリーズとなります。

3015C→3015GC (要見積もり) 6015C→6015GC (要見積もり)

衝突防止切断機能の追加

衝突防止切断機能 (レーザーヘッドの接触回避) が備わっているシステムへ、オプションでアップグレードできます。(要見積もり)

オートフォーカス

1500W以上はオートフォーカスを標準装備していますが、1000W以下の場合オートフォーカスはオプション(要見積もり)です。1000W以下のオートフォーカス装備には事前のお申し出が必要となります。

パイプ加工機付帯タイプに変更

パイプ加工機付帯タイプに変更可能。=CRシリーズとなります。

3メートル *ϕ* 240mm (要見積もり)

6メートル *ϕ* 240mm (要見積もり)

3メートルφ280mm (要見積もり)

6メートルφ280mm (要見積もり)

オプションについて

溶接機能の追加

溶接機能の追加が可能です。 (要見積もり)

冷却機能の追加

レーザーヘッドに冷却機能を追加することが可能です。 6000w以上は標準装備しています。(要見積もり)

集塵機 仕様・特長・用途

TODC-4L 仕様

型 TODC-4L 名

雷 源 3相200~220V

ファン出力 5.5KWシーメンスモーター

風量 (m³/h) 3200

0.6MPa、オイルと水を含まない圧縮 空気圧

空気

1 または 2 吸入口数

吸入口フランジ径 Ф350

フィルターカートリッジ US HV / Finland Ahlstrom / Japan の素材

TorayTORAYフィルターグレードF9

82

コレクター容量 45L

フィルタカートリッジ交 稼働2000時間毎

換時期

カートリッジの数 4

ろ過率 99.99%

大きさW×D×H(mm) 1300×1400×2200(キャスター別)

質量(kg) 700

TODC-6L 仕様

型 TODC-6L 名

3相200~220V 電 源

ファン出力 7.5KW 風量 (m³/h) 4000

0.6MPa、オイルと水を含まない圧縮空 空気圧

吸入口数 1 または 2

吸入口フランジ径 Ф300

フィルターカートリッ

ジの素材

US HV / Finland Ahlstrom / Japan TorayTORAYフィルターグレードF9

フィルターエリア(m²) 120

コレクター容量 50L

フィルタカートリッジ

交換時期

稼働2000時間毎

6

カートリッジの数

ろ過率 99.99%

大きさW×D×H(mm) 1300×1500×2800(キャスター別)

質量(kg) 900

集塵機 特長 用途

https://www.e-inzai.com/shop/www/shop/sunmax/product_flcollector.html

RSD-SUNMAX-FLシリーズにオプションで装備できる集塵機です。

ターボブロワーの強い負圧の下で、汚れた空気は最初に空気入口のスポイラーに当たります。これは、流入する空気の乱流として機能し、気流を遅くします。重力沈降により、粗い粒子のダストは大きな粒子のダスト開口部に直接落下し、これがダスト前の除去の役割を果たします。細粒で低密度のダスト粒子がダストフィルタールームに入った後、空気中のダストはフィルターエレメントの表面に留まります。ろ過されたきれいな空気はエアルームに入り、ファンを介して排気管によって収集されます。

機種

TODC-4L

機種 TODC-6L

- ※ 商品の発送時期については確認してください。
- ※ 本体を発送する地域により送料が異なります。
- ※ ご注文頂く台数分と同じ数量の送料が必要です。 本体・交換部品についてはレーザー館ホームページにてご購入いただけます。

https://www.e-inzai.com/shop/www/shop/sunmax/product_flcollector.html#filter

■ TODC用 フィルタカートリッジ

機種

TODC用 フィルタカートリッジ

TODC-4LおよびTODC-6L用のフィルタです。

集塵機の稼働時間が2000時間ごとに交換が必要になります。

TODC-4Lは4本、TODC-6Lは6本、まとめて交換する必要があります。

■ TODC用 コントロール基板

機種

TODC用コントロール基板

TODC-4LおよびTODC-6L用のコントロール基板です

■ TODC用 液晶ユニット

機種

TODC用液晶ユニット

TODC-4LおよびTODC-6L用の液晶ユニットです。

■ TODC用 トランス

機種
TODC用 トランス
TODC-4LおよびTODC-6L用のトランスです。

■ FLシリーズ フォロー制御機器 BCS100 コントローラ

https://www.e-inzai.com/shop/www/shop/sunmax/product_follow.html

※ 制御用ソフトウェアが「CypCut」の機体に搭載されています。その他の制御用ソフトウェアの場合は使用できません。

■ CypCut搭載機用 ソレノイド・バルブ

酸素用
窒素用

酸素用 : SMC VX222AAXB 窒素用 : SMC VX232RAXH

噴射ガスのON/OFFを制御するソレノイド・バルブです。

機種により搭載位置が異なっています。

過圧により破損する場合があり、破損すると、ガス噴射の制御ができなくなります。

https://www.e-inzai.com/shop/www/shop/sunmax/product_follow.html

■ BCS100 アンプ

機種

BCS100アンプ

■ BCS100 コントローラ - アンプ間ケーブル

機種

BCS100 コントローラ - アンプ間ケーブル

■ FLシリーズ用 コンタクタ (接触器)

 $\underline{\text{https://www.e-inzai.com/shop/www/shop/sunmax/product_contactor.html}}$

型番

LC1D32M7C 32A AC220V

ブランド名 Schneider Electric 商品の個数 1 商品の重量 375 グラム 型番 LC1D32M7C電圧 220 ボルト FL1325LC他、FLシリーズ用コンタクタ

https://www.e-inzai.com/shop/www/shop/sunmax/product_fldoorlock.html

■ FLシリーズ用 ドアロックAタイプ

機種

FLシリーズ用ドアロックAタイプ

サイズ115mm×30mm

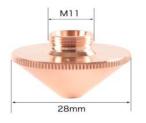
■ FLシリーズ用 ドアロックBタイプ

機種

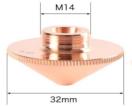
FLシリーズ用ドアロックBタイプ

サイズ85mm×30mm

交換部品についてはsunmax laser レーザー館ホームページにてご購入いただけます。


https://www.e-inzai.com/shop/www/shop/sunmax/product_flparts.html

FLシリーズ(金属切断)用パーツ

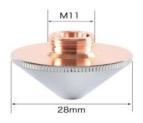

金属切断用FLシリーズ用 噴射ノズルです。

ステンレスやアルミニウムなどの加工に用いるシングルタイプ(溝無し)です。

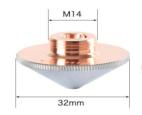
※ 外径がΦ28の噴射ノズルΦ32とは互換性がありませんので、注意してください。

Φ28の噴射ノズル

シングルノズルは窒素を使用して加 エする際に使用します。ステンレス、 アルミニウムなど。


Φ32の噴射ノズル

シングルノズルは窒素を使用して加 エする際に使用します。ステンレス、 アルミニウムなど。


金属切断用FLシリーズ用 噴射ノズルです。

主に鉄鋼の加工に用いるダブルタイプ(溝有り)です。

タブルノズルは酸素を使用して加工する際に使用します。鉄鋼など

Φ28の噴射ノズル

タブルノズルは酸素を使用して加工 する際に使用します。鉄鋼など。

Φ32の噴射ノズル

タブルノズルは酸素を使用して加工 する際に使用します。鉄鋼など。

https://www.e-inzai.com/shop/www/shop/sunmax/product_flparts.html#crmc_ring

セラミックリング

FLシリーズの噴射ノズルを固定するセラミックリングです。 レーザーヘッドによりサイズ・形状が異なりますので、実機に搭載されているものを 確認した上で注文してください。

タイプ
Ф32
Ф28 Аタイプ
Φ28 Bタイプ

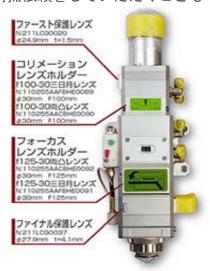
Ф32

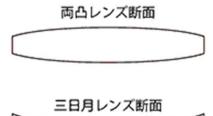
Φ28 Aタイプ

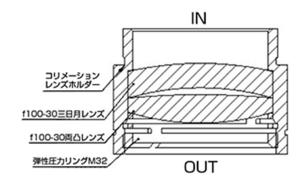
Φ28 Bタイプ

https://www.e-inzai.com/shop/www/shop/sunmax/product_fllens.html

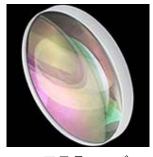
FLシリーズ用レンズ(レーザーヘッドBT240S03TB対応レンズ)


FLシリーズのレーザーヘッドの構造上、レンズが6つ存在します。 各箇所によってレンズは異なります。


レンズの交換は、6枚同時に行うことをお勧めしますが、個別の交換も可能です。個別交換の際は、各レンズよく似ているため注意が必要です。


レンズ交換説明書

- ※ 下図(クリックして拡大表示)及び、説明書をよくご覧の上、 レンズ交換を行ってください。
- ※ レーザヘッドを弊社に送付(送料元払)し、レーザーヘッド分解清掃依頼をしていただくことも可能です。



コリメーションレンズ

コリメーションレンズホルダーに装着 するレンズです。レンズ装着位置をよ く確認の上交換してください。

三日月レンズ

レンズ名

f100-30三日月レンズ Φ30mm 焦点100mm

| f100-30三日月レンズ詳細

• N:110255AAFBHE0089 (d30–3, 3K, F100B–P, 1064nm)

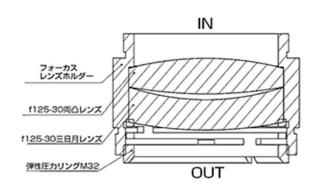
|対応レーザーヘッド

BT240S03TB CL100 FL125 Dia30 ModelCG 27.9x4.1

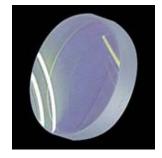
両凸レンズ

レンズ名

f100-30両凸レンズ Φ30mm 焦点100mm


| f100-30両凸レンズ詳細

• N:110255AACBHE0090 (d30-F100mm 1064nm 4KW-P)


|対応レーザーヘッド

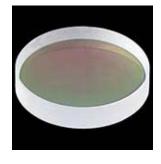
• BT240S03TB CL100 FL125 Dia30 ModelCG 27.9x4.1

フォーカスレンズ

フォーカスレンズホルダーに装着するレンズです。レンズ装着位置をよく確認の上交換してください。

レンズ名

f125-30三日月レンズ


Φ30mm 焦点125mm

| f125-30三日月レンズ詳細

• N:110255AAFBHE0091 (d30-F125mm 4KW-P)

|対応レーザーヘッド

BT240S03TB CL100 FL125 Dia30 ModelCG 27.9x4.1

レンズ名

f125-30両凸レンズ

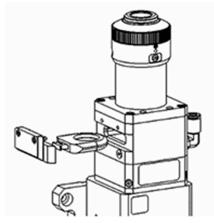
Φ30mm 焦点125mm

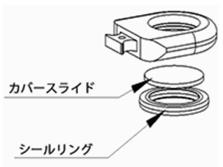
| f125-30両凸レンズ詳細

• N:110255AACBHE0092 (d30-F125mm 4KW-P)

|対応レーザーヘッド

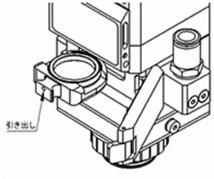
BT240S03TB CL100 FL125 Dia30 ModelCG 27.9x4.1

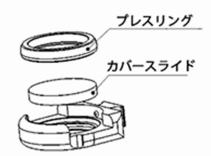

保護レンズ



保護レンズは2箇所に装着し、各保護レンズはサイズが異なります。レンズ装着位置をよく確認の上、交換してください。

レンズ名


ファースト保護レンズ Φ24.9 t=1.5


| ファースト保護レンズ詳細

- N:211LCG0020 (D24. 9x1. 5-4K, 1064nm)
- AR Coated laser Protective Windows (D24. 9 T1. 5)
- レーザーヘッド上部に装着する保護レンズです。

|対応レーザーヘッド

BT240S03TB CL100 FL125 Dia30 ModelCG 27.9x4.1

レンズ名

f125-30両凸レンズ Φ30mm 焦点125mm

| ファースト保護レンズ詳細

- N:211LCG0037 (D27. 9x4. 1-4K, 1064nm)
- AR Coated laser Protective Windows (27.9 T4.1)
- 取扱説明書のメンテナンス項に記載されている保護レンズです。
- レーザーヘッド下部に装着します。

|対応レーザーヘッド

• BT240S03TB CL100 FL125 Dia30 ModelCG 27.9x4.1

■ FLシリーズ用レーザーヘッドレンズ分解清掃依頼

FLシリーズのレーザーヘッドレンズ分解清掃を弊社へ依頼する場合は、レーザー館によりご注文頂けます。ご注文完了後、弊社宛にレーザーヘッドを送付願います。なお、配送料は各元払いにてお願い致します。

https://www.e-inzai.com/shop/www/shop/sunmax/product_fllens.html

よくあるご質問

Q. 1つデータを作って、それを自動で並べて大量生産することはできますか?

はい、ソフトウェアの機能にあります。

Q. RSD-SUNMAXシリーズでどういった素材に加工することができますか?

ゴム・アクリル・ガラス・コルク・皮革・木材・紙・石材など、基本的に金属以外のほぼ全ての素材に加工可能です。

金属の塗装面やアルマイト処理などをけがくことは可能です。

また、RSD メタルマーカーを使用すれば、金属生地に対してマーキング加工が可能になります。「RSD-SUNMAXシリーズ 加工可否表」を参照してください。

Q. レーザー照射時に電流計はどのくらいの値が適正でしょうか?

LASER TIME SET : 0、POWER SET : 100に設定した状態で、「LASERボタン」を押下し続けたとき、機種にもよりますが、15mA以上ならば正常です。

Q.メンテナンス、及び保守点検が不安です?

写真付きの説明書を参照して行って頂ければ、困難な作業ではありませんし、特に手間がかかるものではありません。

Q. ランニングコストはどれくらいですか?

電気代 + ガス費 + 消耗部品費となります。

Q. どれくらいのサイズの文字まで作成可能ですか?

C02レーザーの場合、漢字は2mm角、英数字は1mm角程度まで可能です。 ファイバーレーザーFL30/FL50の場合漢字は0.5mm、英数字は0.1mm角まで可能です。 大きい文字は、ワークエリアサイズの範囲内で可能です。

Q. 故障・不具合発生時はどのような対応になりますか?

基本的には弊社に製品を送っていただいての修理となりますが、ただ、簡単な修理であればお客様自身で修理をしていただくことも可能です。その際は、PDFマニュアルや動画、ビデオ通話などでの修理方法をお伝え致します。弊社スタッフがお客様のもとに修理やメンテナンスサービスを行うことも可能です。

その他のよくあるご質問 SUNMAX LASER サポートをご参照ください

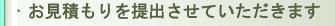
ご購入までの流れ

・まずはお気軽にお問い合わせくださ

電話または、メールでお問い合わせください。弊社スタッフがお客様に あった商品を選定いたします。

· ご購入前に実際にお客様の思い通りの加工できるか確認したい時

製品体験


完全予約制 (有料) 平日 9:00~16:00 対応

お試し加工

レンタル工房 完全予約制(有料) 平日 9:00~16:00 対応

レンタル工房予約サイト

・ご注文

オンラインショップでご購入していただくか、メール・FAX で注文の旨をご連 絡ください。

・セットアップ

商品到着後、マニュアル・セットアップ動画などを確認しながらお客様自身でセットアップしていただきます。ご不明点などございましたら、弊社専任スタッフが電話・メールなどで丁寧にご案内させていただきます

会社概要

会社名	株式会社 リンシュンドウ (RSD Co., Ltd)
代表取締役	林 栄二
本社登記住所	502-0082 岐阜県岐阜市長良東2丁目37番地RSDビル
本社事務所 展示場	502-0013 岐阜県岐阜市中川原4丁目47番地サンマックスビル
長良工場	502-0012 岐阜県岐阜市長良志段見167番地
電話	058-294-7333
FAX	058-294-0020
設立	平成3年10月
資本金	1,000万円
年商	38,000万円
適格請求書	T6200001005823
URL	https://www.laser-machine.com/
e-mail	To: lasermachine.com@gmail.com

